On the Global Regularity of Axisymmetric Navier-stokes-boussinesq System
نویسندگان
چکیده
In this paper we prove a global well-posedness result for tridimensional Navier-Stokes-Boussinesq system with axisymmetric initial data. This system couples Navier-Stokes equations with a transport equation governing the density.
منابع مشابه
A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملGlobal Regularity for a Family of 3d Models of the Axi-symmetric Navier-stokes Equations
We consider a family of 3D models for the axi-symmetric incompressible Navier-Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier-Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the or...
متن کاملGlobal Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data
In this paper, we study the 3D axisymmetric Navier-Stokes Equations with swirl. We prove the global regularity of the 3D Navier-Stokes equations for a family of large anisotropic initial data. Moreover, we obtain a global bound of the solution in terms of its initial data in some Lp norm. Our results also reveal some interesting dynamic growth behavior of the solution due to the interaction bet...
متن کاملOn the regularity of the axisymmetric solutions of the Navier-Stokes equations
Weobtain improved regularity criteria for the axisymmetricweak solutions of the three dimensional Navier-Stokes equations with nonzero swirl. In particular we prove that the integrability of single component of vorticity or velocity fields, in terms of norms with zero scaling dimension give sufficient conditions for the regularity of weak solutions. To obtain these criteria we derive new a prio...
متن کاملA Regularity Criterion for the Angular Velocity Component in Axisymmetric Navier-stokes Equations
We study the non-stationary Navier-Stokes equations in the entire three-dimensional space under the assumption that the data are axisymmetric. We extend the regularity criterion for axisymmetric weak solutions given in [10].
متن کامل